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7 
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Definition 

arbi t rary forcing function in equation (26) . 
st rain tensor 

order  of magnitude 

local pressure 

fluctuating component of pressure  

root mean square value of fluctuating pressure  

aerodynamic s t r e s s  tensor 

mean local pressure 

distance of source from field point at wall 

Reynolds number based on momentum thickness = - 
u 0  

0 

V 

time 

local fluctuating component of velocity in Cartesian tensor 
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also used in Cartesian components of fluctuating velocity 
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local free s t ream velocity just outside boundary layer 

1 
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also used as Cartesian components of mean velocity 

local component of velocity in Cartesian tensor notation 
v. = u. f u 
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DEFINITION OF SYMBOLS (Concluded) 

Definition 

vector referr ing to field point position 

Components of field point in Cartesian tensor notation 

vector referr ing to source point position 

components of source point in Cartesian tensor notation 

also used as Cartesian coordinates with x in the free s t ream 

direction and y normal to the wall. 

boundary layer thickness 

boundary layer displacement thickness 

Kronecker delta = I ,  i = j ;  = 0 i # j 

boundary layer momentum thickness 
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kinematic viscosity = p+/p 
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free s t ream density 

volume element in volume integral 
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PRESSURE FLUCTUATIONS IN TURBULENT BOUNDARY LAYERS 

S U M M A R Y  
The equations governing the pressure fluctuations in a turbulent boundary 

layer are derived following the known methods for  incompressible flow. The attache.d 
turbulent boundary layer is discussed, and the hypothesis is advanced that the major 
cause of wall pressure fluctuations is the intermittent eruption of the laminar sub- 
layer observed during flow visualization experiments. This hypothesis agrees  with 
all the known features of boundary layer pressure fluctuations and offers a good 
physical framework fo r  the understanding of their actions. 

The separated turbulent boundary layer  is also discussed. Compared to the 
attached boundary layer , the equations already derived show how additional sources 
of pressure  fluctuations may be present in the separated boundary layer. First, the 
"turbulence-turbulence" interaction t e rms  may be important , and second, it is shown 
how additional pressure  fluctuations can a r i s e  from the interaction of the turbulence 
with the gradients of velocity in'the f ree  s t ream direction. The exact magnitude of 
these te rms  will not be known until more detailed experimental information becomes 
available. Finally, it is shown how the conventional turbulence-mean shear  inter-  
action gives rise to pressure patterns which are convected at only a fraction of the 
free stream velocity. Since this conclusion contradicts the presently available 
supersonic experimental resul ts ,  additional mechanisms of pressure  fluctuation 
may be occurring in supersonic separated flow. 

SECTION 1. INTRODUCTION 

The first work on the estimation of the pressure fluctuations within turbulence 
was due to Heisenberg [Ref. 13 and Batchelor [Ref. 21. Their work referred to the 
highly idealized model of homogeneous (the same from point to point) , isotropic (having 
no preferred orientation) turbulence. Even for this simple case,  considerable manipu- 
lation and approximation were required to derive a result. It was found that the root 
mean square value of the pressure  fluctuations in homogeneous isotropic turbulence was 
given by - 

(1) 
2 =0.58 p,u , Pm* 

where po is the density and II is the instantaneous velocity fluctuation. 
magnitude of the velocity fluctuation will be the same for  any direction in isotropic tur- 
bulence. 

Note that the 



Uberoi [Ref .  31 made s imilar  calculations using more detailed experimental 
L.. . 

results.  These calculations gave an average value of about 

2 = 0 . 7 p u  . 
pms 0 

A l l  these calculations have relied on estimating the correlation patterns of the turbulent 
velocity fluctuations, and relating these to the pressure  fluctuations via the Navier- 
Stokes equations and all have re fer red  to incompressible flows. Although i t  is possible, 
in principle, to extend these calculations to include the effects of compressibility, this 
would be a highly complicated task, particularly because of the need to consider re- 
tarded time differences within the flow. 

The resul ts  of equations (1) and ( 2 )  refer to the pressure fluctuations produced 
by turbulent interactions alone. 
turbulence" contribution. 
shear ,  which has a pronounced effect on the pressure  fluctuations which occur. 
second contribution from the "turbulence-mean shear" interaction was f i r s t  investigated 
by Kraichnan [Ref. 41 . He extended this work [Ref. 51 to cover wall pressure fluctua- 
tions in the turbulent boundary layer. Kraichnan's work has been reviewed and extended 
by Lilley, and Lilley and Hodgson [Ref. 6 and 71. 

This source of pressure  fluctuations i s  the "turlxJence- 
However , the majority of real flows wi l l  contain some mean 

This 

Kraichnan's original calculations in Reference 5 indicated that the ratio of the 
turbulence-turbulence contribution to that of the turbulence-mean shear  was  1: 32. 
Ho'dgson has also made calculations [Ref. 81 which give a ratio of 1:20. It would thus 
appear that it is the turbulence-mean shear interaction which gives the major contribu- 
tion to the wall p ressure  fluctuations, and this resul t  has been generally accepted. 
ever ,  Corcos [ Ref. 91 has reported calculations which find the ratio to be only l: l. 6,  
so that the question cannot yet  be considered as completely resolved. 

How- 

In the following sections the equations for the boundary layer pressure fluctua- 
tions will first be derived following the known methods, and the various approximations 
required discussed. 
turbulence-mean shear  interactions is shown. -The attached turbulent boundary layer is 
discussed in detail and a new hypothesis is advanced offering a physical basis for the 
understanding of the pressure  fluctuations. The equations are then applied to the sepa- 
rated boundary layer, and i t  is shown how some of the approximations made for the 
attached boundary layer are no longer valid, s o  that new sources of pressure fluctuation 
may be expected in the separated turbulent boundary layer. 

The contribution of both the turbulence-turbulence and the 

2 



SECTION It, EQUATIONS FOR THE PRESSURE FLUCTUATIONS 

Derivation of the  Differential Equation 

In this section the basic equations describing the pressure fluctuations are de- 
This derivation is an amalgam of the methods given in References 4 through 9. rived. 

The analysis begins from the exact equations of aerodynamics which incorporate the 
effects of both viscosity and compressibility, and uses tensor notation with the summa- 
tion convention. 

The equation for  the conservation of mass  may be written as 

a ax. aP (Pi) = o ,  - +  
I 

at 

and the equation for conservation of momentum as 

Both experiment and theory agree that simple non-relaxing fluids show a linear 
dependence of viscous shear  on velocity gradient; the aerodynamic stress tensor 
p.. can therefore be written as 

13 
n 

where p is the local static pressure  and 

ax. 
=+ av . 

e.. 
j I 

I J  2 ax 

is the ffstrain" tensor. 

- avk. - -  
ekk axk 

(3) 

The derivatiomof equation (5) is given in detail by Jeffries [Ref. I O ] .  Differentiating 
equation [ 51 and rearranging gives 

3 
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Differentiating equation (4) with respect to xi [equivalent to taking the divergence) and 
using equation ( 6 )  gives 

Using equation ( 3 )  on the f i r s t  term of equation ( 7 )  and interchanging the "dummy" 
suffixes in the last term gives 

Equation (8)  is still exact within the limitations of equations (5 ) .  However, to 
proceed further, it will be necessary to approximate, and from here  on the fluid will be 
assumed to be ineompressihle. 
( 3 )  becomes 

With the assumption of incompressibility, equation 

a v. 
a x. 
. I  - -  - 0. 

I 

(9) 

When this result  is applied to equation ( 8 ) ,  the las t  term vanishes. It can be seen, 
herefore, that the viscosity has no direct  effect on the pressure ,  and that even in a i" compressible flow the effect of viscosity will only enter via the effect of compressibility. 

Thus, the last term in equation (8) may be ignored in all practical cases. 
clusion for  local pressure fluctuations parallels that of Lighthill for sound radiation. 
Lighthill [Ref. li] showed that the inertia t e rms  gave the leading contribution to the 
sound radiation, and in the present case, the inertia t e rms  are again the most important. 
For an incompressible flow, the first term in equation (8) is also zero,  although this 
term will certainly require consideration in any treatment of a compressible flow. How- 
ever ,  this f i r s t  term will be ignored henceforth. 
tion (8) becomes 

This con- 

Thus, for  incompressible flows equa- 

a2 
V.V.) +P= 0 .  

ax. 
a2 
ax .ax 2 

~j I 

('0 I J 

\ 

This is the equation from which the pressure  fluctuations may be calculated. 

4 



Now , 

Using (9), the first term in equation (11) may be seen to be zero, leaving 

Using equation ( 9 )  again, the second term in equation (12) is zero,  so that equations 
( I O )  and (12) show 

If the variables a re  now put equal to the sum of their -~ mean and fluctuating par ts  

v. = u. + ui 
I I 

v = u. + u  
j J j 

p = P + p '  9 

then the relationships for the mean and fluctuating parts may be established. 
relations (14) in equation ( 9 )  and taking means gives 

Putting 

au. 
I 

= 0 ,  - 
ax. 

I 

since the mean of the fluctuating quantities is zero. 
equation ( 9)-&owS also 

Subtracting equation (15) from 
.-- - .  

au. 
I = 0 ,  - 

ax. 
I 

Now putting relations (14) in equation (13) yields 

5 



au. au. au au. au sui) a u  au. i '+.I . ~ + i ~ + j -  
I j l j  I J 

ax. ax ax. ax 
j 

ax. ax. j ' (17) 
2 2 v P + v  p l -  

7 
and taking means yields I 

a u  au. au 1 axj( , i I + i  
ax. j I 

2 v P =  

Subtracting equation (18) from equation (17) ,  and noting the identity of the two middle 
te rms  of the right side of equation (17), which differ only in their "dummy1( subscripts, 
gives 

au. au. 
I 

au. au au. au 
v 2 PI = - Po L 2 2 ax ax. i+(+ I j i- ax. I --)I. ax j ax. I (19) 

Note also that, by virtue of equation (16) ,  

au. 
I 

I 1  J I 

so that an alternative form of equation (19) is 

The right-hand sides of equations (19 )  and (21) have been split into two parts. 
first term depends on both the mean shear aUi/ax. and the turbulence intensity uj, 
whereas the second pa r t  of the expression depends only on turbulence intensities. 
two par ts  correspond to the turbulence-mean shear  and turbulence-turbulence contribu- 
tions, respectively. 

The 

J / These 

Application to the Turbulent Boundary Layer 

Suppose now that equation (21) is applied to the case of the two-dimensional 
turbulent boundary. Ignore, for the time being, the nine component contribution of the 
turbulence-turbulence term. The contribution of the turbulence-mean shear term may 

6 
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be written, in ordinary Cartesian coordinates with x in the free s t ream direction and y 
normal to the wall, as 

+--+--+-- 8 

av a u t  au au av av au av I ax ay ay ay ax ax ay 
2 v p' = - 2 p ,  

where U, V are the components of mean velocity and u, v are the fluctuating components 
of velocity in the x and y directions, respectively. 

The orders  of magnitude, 00,  of these t e rms  can be calculated following the 
classic boundary layer approximation technique. 

Equation (15) shows 

so that 

where 6 is the thickness of the boundary layer. 
gives the te rms  as 

Using equation (23)  in equation (22)  

v 2 p' = - 2 p  0 O ( 9  o($)o(-o(y)i~ 
where the orders  of magnitude of each of the fluctuating te rms ,O(f )  , have been taken 
as equal. In the attached boundary layer, the data of Klebanoff [Ref. 121, reproduced 
in Figure 2 ,  indicate that the u fluctuation is about 50 percent larger  than the v fluc- 
tuation, with the magnitude of the lateral  fluctuations falling between that of the u and v 
fluctuations. However, the supposition of the equality of O ( f )  cannot be confirmed or  
denied for  the case of a separated boundary layer since no experimental evidence is 
presently available. For  the separated case,  the supposition can only be regarded as 
a reasonable a priori assumption. 

When the boundary layer thickness (6)  is small ,  it is clear  from equation (24)  
that the term is third dominant. 
be written 

Thus, for the attached boundary layer equation (22)  may 

7 



au av 
v 2 p '  = -2p, ay ax - -. 

This equation has been the foundation of a number of attempts to predict attached 
boundary layer pressure  fluctuations [Ref. 5 through 91. 
case ,  these arguments are not valid. A discussion of the separated boundary layer 
is given in Section 4, but first of a l l  the formal solution to these equations will be 
written. 

However, for  the separated i 

Formal Solution of the Equations 

The equations for  the pressure  fluctuations, from the original of equation ( IO) 
through its successive forms of equations (13)  , (19) , ( 21) , ( 22) , and ( 25) , are all of the 
Poisson type. 
written as 

v 

The solution to this equation is well known. I€ a typical equation is 

( 2 6 )  
2 

p =A(& h) t) 3 

then the solution in the absence of any boundary is 

p(x, t) = -- ' f A O L / t )  d o ( ~ ) .  N 

411 v Tz- N 

Here x is a vector describing the field point a n d z  is the "dummy variable" of integration. 
There is an analogy between equation (27) and a solution to the wave equation which 
would be an identical integral, but evaluated at retarded time. 
recently been used by Paterson [Ref. 131 in an attempt to produce a simpler mathemati- 
cal and physical model for sound generation by turbulence. 
case, we are necessarily interested in the evaluation of the integral a t  a wall. Here we 
follow Kraichnan [Ref. 51 and include the effects of the wall through a mi r ro r  flow.mode1 
of the turbulence field, so that the solution to equation (26)  'in the presence of a wall 
be comes 

N 

This similarity has 

However, in the present 

where y:: gives the value of y reflected in the wall; i.e. , 
N N 

8 



Y; = Y 1  

Y; = Y3 

so that when the field point x is actually on the wall, 5 - x =  N x - x > : c  , and equation (28) 
becomes 

N 

The presence of the wall has caused pressure doubling. 
(29)  in more detail, it is useful to re turn to equation (25) and apply simple similarity 
arguments to give the leading parameters  governing the pressure  fluctuations. 

Before considering equation 

SECTION I 1 1 .  THE A R A C H E D  TURBULENT BOUNDARY LA,YER 

Simi lar i ty Arguments 

I It has been found that the turbulent boundary layer has a velocity profile which 

This "law 

, 
I 

i 
; 

may be described, 
files, the well known logarithmic velocity distribution due to von Karman. 
of the wall" is [Ref. 141 

at least near the wall (Fig. I), by a one parameter family of pro- 

U 1 

- k  U - log - -  

7 

where k and A are experimentally determined constants. UT is the "shear velocity" de- 
fined by 

where T~ is the wall shear  stress. 

Now equation (25) showed the pressure fluctuations to be dependent on the mean 
shear through the flow; this may be found from the velocity profile of equation (30)  as 

I 
a.U U 

9 



In addition, the intensity of the fluctuating velocities through the boundary layer is 
proportional to the momentum transfer through the boundary layer,  and thus 

/ l  

v = a  U 7 '  (33 )  

where a! is a constant of order  unity. Using equations (32)  and (33) in equation (25) 
shows that 

2 2 v P'" - Po UT (34) 

The constant of proportionality in the relationship will  depend on the typical eddy s ize  
and shape, i. e. , on the correlation patterns within the flow. 

Equation (34)  establishes an approximate proportionality between pressure fluc- 
tuation and wall shear  stress. It has been found experimentally that this proportionality 
gives a satisfactory description of the variations of pressure fluctuation in different 
attached turbulent boundary layers. Lilley has performed detailed calculations [ Ref. 61 
and finds 

The constant in this equation is found experimentally to be a slowly varying function of 
Reynolds number. 
[Ref. 151 and generally lie within the range 

The results from a number of experiments are reported by Bull 

This simple relationship between pressure fluctuation and local shear is the result  of 
the one-parameter family of profiles that can be applied to the equilibrium attached 
turbulent boundary layer. It must be emphasized that any departure from such condi- 
tions will negate the conclusions reached above. For instance, local wall  roughness or  
f ree  s t ream turbulence will affect the results. In particular, there can be no reason to 
apply these resul ts  to the very different velocity distributions occurring in a separated 
flow. 

D e t a i l s  of t h e  P r e s s u r e  P a t t e r n s  

The arguments advanced above, although successful, have not given any detailed 
To obtain this information the formal solution information on the pressure fluctuations. 

to equation (25)  will be written using equation ( 2 9 ) .  The pressure  fluctuation at the wall 
is thus 

au a v  
Po d o .  

p = 2r r a y  a x  (36)  Y > O  

10 



Equation (36) has  been written in terms of Cartesian coordinates x, y ,  z, and r 
is the distance from the field point at the wall. A complete discussion of equation (36) 
would require a consideration of the correlation patterns for  the velocity fluctuations. 
However, this refinement will not be considered in this report ,  and the discussion will 
be limited to a consideration of the local interactions between the mean shear  and the 
turbulence. 

To draw some conclusions from equation (36) , the data of Klebanoff have been 
These data give the most complete information on velocity fluctua- $' 

:: 
analyzed in detail. 
tions presently available, and are thus particularly suitable for  the determination of the 
pressure  producing mechanisms within the boundary layer. Klebanoff did not make any 
measurements of .the pressure  fluctuation field, but this is of no particular disadvantage 
in the present case, as a direct comparison of magnitudes is not required. 

Y 

Figures I, 2, 3a, and 3b are from Klebanoff's repor t  [Ref. 121 and show the 
mean boundary layer profile, the velocity fluctuations, and the "dissipation derivatives, 
respectively. 
represent  many of the pressure  producing te rms  of equation (19) .  The term of particu- 
lar interest  is that of &/ax, as this is the term which interacts with the mean shear  in 
equation (36) .  But this term is one of the smaller  derivatives plotted, and it seems 
that the turbulence-turbulence interactions, f o r  instance, of - - and - - , could 

be important in some cases. 
and is shown in Figure 4. 
Figure I, and therefore may not be accurate, although it should show the main effects of 
interest  . 

Multiplication of av/ax from Figures 3a and 3b with a U/ay from Figure 4 gives 
a measure of the contribution of each par t  of the boundary layer to the overall p ressure  
fluctuation, and the resul t  is plotted in Figure 5. Clearly, a major source of the pres- 
su re  fluctuation arises in the par t  of the boundary layer closest  to the wal l ,  since both 
the mean shear  and the velocity fluctuation are increasing rapidly in this region. It 
should be remembered, however, that correlation areas could have a marked effect on 
this conclusion. In Figure 5 the pressure  contribiition is plotted against local mean 
velocity, as it is thought that this allows a mort: meaning€ul interpretation to be made. 
Contributions from the par t  ol' the boundary layer below 0.5 U, cannot be determined 
since &/ax is not given there. 
requires  the use of a cross-wire probe in the hot-wire anemometer, and the physical 

"laminar sublayer" region, the velocity fluctuations (particularly, &/ax) may be ex- 
petted to be small. Therefore, the contribution to the pressure  fluctuation from well 
within this region will also be small. 

These dissipation derivatives are of particular interest  since they also 

all& h a w  
ax ax az ax 

The mean shear  for  this boundary layer  has been calculated 
This figure has been derived by graphical differentiation of 

Measurement of the v component of fluctuating velocity 

'i 
dimensions of the device preclude measurements near the wall. However, in this 

# 

Figure 5 is particularly interesting since it shows a major contribution to the 
pressure  fluctuation to come from parts of the flow moving with velocities of around 

I 1  



0.  6 Uo o r  less. This contrasts with the generally quoted resul t  that the pressure field 
in the boundary layer is dominated by components moving at 0.8 Uo. 

Figure 6, taken from Reference 15, by Bull, offers a solution to this dilemma. 
This figure shows the apparent velocity of convection between two transducers, and 
has been determined from the time delay required for  optimum correlation between the 
signals received from each transducer. A t  large transducer spacings, the apparent 
convection velocity of the overall signal is indeed about 0.8 Uo, but Figure 6 shows how 
this velocity approaches 0 .53  Uo at zero spacing. This second figure is in much better 
agreement with the arguments advanced above. 

a 

k 

This variation in apparent convection velocity with transducer spacing has been 
reported by a number of authors [Ref. 16, 17, 181 and is usually explained as being the 
resul t  of the variation in  the distance for which various components of the flow are 
coherent. It seems reasonable to suppose that the high frequency small  wave length 
components of the flow will lose their coherence in a much shorter  distance than the 
low frequency large wave length components. In.addition, it is not unreasonable to sup- 
pose that the small  wave length components originate from the slower moving fluid near 
the wall, while the large wave length components are emitted from higher mean velocity 
regions further out from the wall. These two arguments in  combination provide an .ex- 
planation for the variation in convection velocity with spacing. The relatively rapid loss  
of coherence of the high frequency terms will resul t  in the correlation at large spacings 
being dominated by the faster  moving, lower frequency pressure  patterns. Additional 
experimental evidence supporting these arguments is presented in  References 15, 16 , 
and 18. However, some authors have not drawn the inescapable conclusion that local 
pressure  fluctuations are dominated by pressure producing phenomena near the wall, 
with a typical convection speed of near 0.6 Uo o r  less. 
.arguments from the analysis of the data of Klebanoff put forward ear l ier .  

This agrees nicely with the 

The additional experimental evidence supporting these conclusions comes mainly 
from correlation measurements in narrow frequency bands. For  this, the transducer 
signals a r e  passed through narrow band fi l ters before correlation. Reasonable con- 
sistency is achieved for  high frequency components in the various experimental investi- 
gations, but there is less agreement on the exact effects of the low frequency parts. In 
this discussion the r'high'l and "low" frequencies may be regarded as being roughly those 
with w 6:*:/U0 greater and less than unity, respectively. Bull [Ref.  151 concludes that 
the high frequency components lose coherence after convection for  about four wave 
lengths while the low frequency components lose coherence in a way which is not a func- 
tion of wave length. Willmarth and Woolridge [Ref. 161 conclude the loss of coherence 6 

extends over four to six wave lengths for both high and low frequencies. 
resul ts  show how the high frequency components are convected at a slow speed, around 
0.6 Uo, and the investigations also agree that the convection velocity of the low fre- 
quency components is near 0.8 Uo at large transducer spacings. However, the exact 
effect of the low frequency components at small  spacings is not clear. Bull's resul ts  for 

I 

Both sets of 
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~ this case seem to lack internal consistency, and Willmarth and Woolridge's results 
do not admit a simple interpretation. 

i This problem is considered further below. 

Possible Flow Mechanisms 

Although the effects of eddy coherence must be of practical significance, the "loss 
of coherence" hypothesis discussed in  the last section is not the only mechanism by which 
the pressure  fluctuation phenomena may be interpreted. In this section an alternative 
hypothesis is presented which provides a good explanation for many of the phenomena 
observed. 

'F 

Although the arguments are not conclusive, they offer an improved physical 
I understanding of the causes of wall p ressure  fluctuations. 

Suppose that the local pressure  fluctuations at any time were  dominated by the 
effects of a single eddy structure. Then the variation of convection velocity shown in 
Figure 6 could be simply the result  of the outward movement of this eddy as it moved 
downstream. 
velocity as it moved downstream. With this idea, Figure 6 may be used directly to  
predict a typical eddy locus from the known boundary layer velocity profile (Fig. 7 ) .  

This outward movement would result  in its attaining a greater  convection 

The locus represents a weighted statistical average of all the eddies which have 
passed the transducer position. 
effects of each eddy, which may be expected to vary with distance from the wall. 
care should be taken in drawing conclusions from this figure. 
rise to some interesting speculations about the generation of pressure fluctuations in the 
turbulent boundary layer. 
showed how a major source of pressure fluctuation, particularly of the high frequency 
par t  of the fluctuation, was located near the edge of the laminar sublayer where the con- 
vection velocities are near 0.6 Uo (Fig. I ) .  

The weighting is provided by the pressure  generation 
Thus, 

However, Figure 7 gives 

It will be  recalled that the arguments of the last section 

In 1956, Einstein and Li [Ref. 191 showed how the laminar sublayer suffered 
from an intermittent disintegration. 
Grant [Ref. 201 and the mechanism has recently been the subject of a thorough investi- 
gation by Runstadler, Kline and Reynolds [Ref. 211 . It is found that the laminar sub- 
layer convolutes itself into eddy structures which erupt away from the wall. Runstadler, 
Kline and Reynolds describe this as "the ejection of momentum deficient fluid from the 
wall" and Grant sees the mechanism as a "stress-relieving motion. 'I This powerful 
mechanism is at work near to the wall, in just  the region where the highest contributions 
to the pressure  fluctuations may be expected. It is not unreasonable to suppose, there- 

this intermittent eruption of the laminar sublayer. 

This conclusion was supported by the work of 

I 

8 fore ,  that a major fraction of the pressure  fluctuations at the wall is a direct resul t  of 

This hypothesis implies that the. pressure-producing eddy is expanding away from 
the wall as it passes  downstream, as was concluded above from the convection velocity 
measurements (Fig. 7).  
observations of the eddies resulting from the disintegration of the laminar sublayer and 

Runstadler , Kline and Reynolds [Ref. 211 have made visual 
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found that the generation is random in space and time. 
define typical paths taken by an  eddy after generation as a statistical average of the many 
individual paths observed. 
with that. predicted from the convection velocity measurements. 
amazingly good, and provides powerful evidence in  support of the hypothesis. 
in agreement at downstream stations may be readily understood as being the resul t  of 
the loss of coherence of the wall eddies. 
derived from correlation measurements reflecting a larger  proportion of the more 
coherent higher speed eddies farther from the wall. But for  eddies near to the wall, the 
two plots a r e  almost identical, and one can again infer that the eddies near  the wall 
dominate the local pressure fluctuation phenomena. 

However, they were able to 

This eddy locus is plotted on Figure 7 and may be compared 

The loss 

This would resu l t  in the convection velocities 

The agreement is 

8 

I 

However, Figure 7 cannot be regarded as providing conclusive proof of the 
present hypothesis. A s  has already been mentioned, the locus derived from the fluctua- 
ting pressure convection velocity measurements represents some so r t  of weighted 
average. In addition, the variation of convection velocity used in the derivation on 
Figure 7 (from Ref. 15) is not identical to that found in other investigations, [Ref. 17 
and 181. There is also a difference in Reynolds number between the two cases of Figure 
7. Bull's work was accomplished at Reg - 20,000, whereas the work of Runstadler et al, 
had Reg Z 2,000. Thus, the agreement between the two cases  of Figure 7 could be 
entirely fortuitous. Nevertheless, physical intuition suggests that if  such powerful 
"ejection" or "eruption" is taking place near to the wall, then it must be a major factor 
in producing the pressure  fluctuations observed. 

The writer feels that this mechanism probably provides all of the high frequency 
par t  and much of the low frequency part of the pressure fluctuations, and thus implies 
local convection velocities of 0. 6 U, o r  less for these fluctuations. The remaining par t  
of the low frequency fluctuation probably arises much farther from the wall. It is 
interesting to speculate that this remaining par t  may occur through an identical eruption 
of the turbulent layer out into the f r ee  s t ream, as par t  of the known intermittent pro- 
cesses  in turbulent flow. The relationship between the eruption of the laminar sublayer 
and the intermittency observed in the outer par ts  of the turbulent boundary layer has 
been pointed out in References 20 and 21 and this second phenomenon could well be a 
source of low frequency pressure  fluctuations with a convection speed near 0.8 Uo. It 
is difficult, at this stage, to determine the absolute values of the two postulated sources 
of pressure fluctuation. Examination of the magnitudes of the space time correlation 
curves of Reference 13 suggests that the effect of the inner region through sublayer 
eruption is at least five t imes stronger than the effects due to the outer region. 

A possible mechanism producing pressure fluctuations , both through sublayer 
eruption and in the outer intermittent region, is eddy acceleration. 
have been shown to be a source of noise generation in References 22 and 23. It seems 
probable that these could become important sources of pressure fluctuation in high 
subsonic o r  supersonic boundary layers. 

Eddy accelerations 
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SECTION IV. PRESSURE FLUCTUATIONS 
IN A SEPARATED TURBULENT FLOW 

Equation (25) has been the starting point for most of the attempts to predict 
However, it cannot be applied to the present boundary layer pressure  fluctuations. 

problem of the separated turbulent boundary layer. 
that the "turbulence-turbulence" contribution to the pressure  (the second par t  of equation 
19)  can be neglected. In a separated flow, high values of turbulence intensity are to be 
expected, and these could contribute substantially to the wall pressure fluctuations. 

it will be difficult to make any final statement on the importance of this contribution. 
Clearly, the turbulence intensities and correlation areas must be expected to be con- 
siderably higher than in the attached boundary layer. 
tween the velocity profile of a separated turbulent boundary layer (Fig. 8) and that of 
a jet. 
been much interest  in the parallel problem of the noise radiation. 
gations have shown [Ref. 241 that the turbulence-mean shear interaction is dominant. 
In the absence of other information, i t  may be assumed, for  the present, that the same 
dominance is reflected for  the case of pressure fluctuations in separated flow. 

First, it is by no means obvious 

c 

7 However, until definitive measurements have been made in the separated boundary layer,  

There is a general similari ty be- 

Little work has been done on the pressure fluctuations in a jet ,  but there has 
For this case investi- 

This leaves the turbulence -mean shear  interaction of equation (22) as the 
leading source of pressure  fluctuations. 
i ts  approximate form given in equation (25) is also valid. Equation (25) has been de- 
rived using the order  of magnitude arguments presented in equation (24) .  While these 
cause no dissent for the case of an attached turbulent boundary layer,  for a separated 
boundary layer,  6 may not be small  compared to x. If the separation is taken to occur 
at an angle of 17 degrees,  [Ref. 251 then the ratio of 6 to x will be of the order  0. 3 .  
The contribution of the f i r s t  two te rms  of equation (22) could thus be equal in magnitude 
to that of the third term. This will clearly result  in an increase in pressure fluctuation 
and could have a major modifying effect on the correlation and frequency patterns en- 
countered. 

However , this does not necessarily imply that 

The two regions which may be expected to contribute most  of these effects are 
the par ts  of the flow with maximuin positive and negative velocity, where the a U/a x 
te rms  will be highest (Fig.  8) .  However, little can be said of the exact effects, since 
no information on the s t ructure  of the separated turbulent boundary layer is presently 
available. A further complication in the theoretical treatment of these flows is that i t  
may not be valid to assume homogeneity in the turbulence field. It is hoped that the pro- 
jected experiments at Wyle Laboratories will help to show the true relative importance 
of the various te rms  in equation (22) for the separated case. 

J 

It is possible to make some general statements about the effect on the pressure  
fluctuations of the third mean shear  term in equation (22) ( a  U/a y )  . Figure 8 shows a 
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conjectural velocity distribution for the turbulent separated boundary layer. 
shear becomes large at two separate points in  the flow. The f i r s t  is near the wall. 
Here it may be anticipated that the law of the wall will apply, and that the pressure  
fluctuations from this pa r t  of the flow will be proportional to the wall shear stress as 
in equation (34) .  
the attached boundary layer since the velocity to which this shear  is reacting is the ve- 
locity of the reverse  flow, which is only a fraction of that of the f ree  stream. 
mechanism producing the pressure  fluctuations from this region may again be that put 
forward in Section 111, i. e. , due to the direct  influence of the intermittent eruption of 
the laminar sublayer. 

The mean 

This contribution must be expected to be substantially lower than in 

The 

+ 

r 

The second region of high shear is the central  par t  near the "dividing streamline" 
of the separated flow. The contribution of this region may be large. A separated flow 
grows at an angle perhaps ten times that of an attached flow, and this factor of ten is a 
measure of the total momentum transfer that is taking place through the flow. In the 
attached boundary layer,  this transfer is a resul t  of only the wall shear stress, but in 
the separated boundary layer,  it is the interaction of the forward and reverse  flows 
which gives rise to most of the momentum transfer terms.  Momentum transfer in this 
second high shear  region may thus be expected to be an order  of magnitude larger  than 
that near the wall in the attached boundary layer case,  with proportionate effects on the 
wall pressure fluctuation. 

Lilley and Hodgson [Ref. 71 have investigated a s imilar  flow with two regions of 
high shear using a wall jet. 
fluctuations to come from this outer region. A particular feature of this outer region in 
the present separated flow case is that it is moving at a smal l  fraction of the free s t ream 
velocity. 
be expected to have a low convection speed. In addition, contributions may be expected 
from the region of high negative velocity through the f i r s t  two te rms  of equation (22) , 
and this will again resul t  in the prediction of a low overall convection velocity. 

They also found the major contribution to the pressure 

The pressure  fluctuation patterns resulting from this region would therefore 

This conclusion is in opposition to the experimental work of Kistler [Ref.  261 
Kistler's work shows a convection velocity of about for supersonic separated flows. 

0. 6 of the local s t ream velocity. 
behind the separation shock was not accounted for in the analysis. ) A t  this stage, it is 
difficult to state where this discrepancy arises.  It could be due to the effect of eddies 
in the outer par t  of the boundary layer entering via the first two terms in equation (22) .  
If this is the case,  it will become apparent in the current  low speed separated flow ex- 
periments planned at Wyle. On the other hand, the discrepancy could be due to effects 
associated with the supersonic flow, for example, the eddy acceleration effects disoussed 
at the end of Section 111. It  is also possible that Kistler's result  is due to moving shocks 
within the separation region. It is clear that the resolution of this discrepancy must form 
a central  par t  of any attempt to explain the pressure fluctuations in supersonic separated 
flows. 

(Note that in his report  the lower f ree  s t ream velocity 

L 
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SECTION V. CONCLUSIONS 

The equations governing the generation of pressure  fluctuations in a boundary 
layer have been derived and the various approximations made have been noted. 
most  important approximation is the assumption of incompressibility. The equations 
have been written in a form which allows identification of the contributions of the 
"turbulence - mean shear" and %rbulence - turbulence" to the pressure  fluctuation. 
Both of these te rms  can be significant,but the more important effect is usually the 
turbulence - mean shear  interaction. For the pressure  fluctuations in a two-dimensional 
boundary layer, the equation takes the form 

The 

' *  
! 

(22 ) au a u  + av a v  ~ auav + av a u  
a x  a x  - -). (- - 2 

v P ' = - * P ,  a x  a x  a y  a y  a y  a x  

For the attached boundary layer, the most important term will be the third, and 
the data of Klebanoff [Ref. 121 have been analyzed to show the approximate contributions 
of the various parts of the boundary layer. 
of the pressure  fluctuations lies near the edge of the laminar sublayer, where eddy con- 
vection velocities may be expected to be about 0.6 Uo o r  less. It is shown how a proper 
interpretation of the resul ts  of space-time pressure  correlation measurements gives the 
same conclusion. 
refers to the convection speed of the coherent low frequency eddies which dominate the 
correlations at large spacings, but only represent a small  part  of local pressure  fluc- 
tuation. 

The analysis shows that the major source 

The frequently quoted result  of convection velocities near 0.8 Uo 

It is suggested that the major par t  of the local wall p ressure  fluctuations could 
arise from the intermittent eruption of the laminar sublayer observed in flow visualiza- 
tion experiments. This seems physically likely, and the typical eddy path implied by the 
pressure  fluctuation measurements following this hypothesis is found to agree with a 
typical eddy path actually observed in experiment, although this agreement may be 
coincidental. A small  proportion of the pressure fluctuation, confined to the low fre- 
quency region, is probably due to other par ts  of the boundary layer, the inner par t  of 
the intermittent region, for example. A description of the pressure  fluctuations as 
being mainly the result of laminar sublayer eruption agrees with all the knowntexperi- 
mental facts. It provides a good model for a physical understanding of the forces at 
work, and should lead to improved analytical models to describe the hressure  fluctua- 
tion phenomena. 

The pressure  fluctuations in a separated turbulent boundary layer have been 
discussed in the light of equation (22) .  It was shown'how all the te rms  in this equation 
may produce a significant contribution to the pressure  fluctuations observed. It was 
also shown that the third term in equation (22) could be expected to yield pressure  
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patterns which were convected at near zero velocity. The other te rms  would not be 
expected to alter this conclusion, but it is radically different from the experimental re- 
sult of a convection speed near o. 6 of the local f ree  s t ream velocity recorded by Kistler 
[Ref. 261 . This paradox was not resolved, but is thought to represent a fundamental 
problem in the analysis of the pressure  fluctuations in separated flow. The possible 
modifying effects of the turbulence - turbulence interaction t e rms  were noted, but again 
no f i rm conclusions can be drawn until more experimental evidence is available. 
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